1,832 research outputs found

    A note on Volterra integral equations and topological dynamics

    Get PDF
    Topological dynamics theory applied to nonlinear Volterra equation

    Ultrahigh Bandwidth Spin Noise Spectroscopy: Detection of Large g-Factor Fluctuations in Highly n-Doped GaAs

    Get PDF
    We advance all optical spin noise spectroscopy (SNS) in semiconductors to detection bandwidths of several hundred gigahertz by employing an ingenious scheme of pulse trains from ultrafast laser oscillators as an optical probe. The ultrafast SNS technique avoids the need for optical pumping and enables nearly perturbation free measurements of extremely short spin dephasing times. We employ the technique to highly n-doped bulk GaAs where magnetic field dependent measurements show unexpected large g-factor fluctuations. Calculations suggest that such large g-factor fluctuations do not necessarily result from extrinsic sample variations but are intrinsically present in every doped semiconductor due to the stochastic nature of the dopant distribution.Comment: 5 pages, 3 figure

    Parsec-Scale Bipolar X-ray Shocks Produced by Powerful Jets from the Neutron Star Circinus X-1

    Get PDF
    We report the discovery of multi-scale X-ray jets from the accreting neutron star X-ray binary, Circinus X-1. The bipolar outflows show wide opening angles and are spatially coincident with the radio jets seen in new high-resolution radio images of the region. The morphology of the emission regions suggests that the jets from Circinus X-1 are running into a terminal shock with the interstellar medium, as is seen in powerful radio galaxies. This and other observations indicate that the jets have a wide opening angle, suggesting that the jets are either not very well collimated or precessing. We interpret the spectra from the shocks as cooled synchrotron emission and derive a cooling age of approximately 1600 yr. This allows us to constrain the jet power to be between 3e35 erg/s and 2e37 erg/s, making this one of a few microquasars with a direct measurement of its jet power and the only known microquasar that exhibits stationary large-scale X-ray emission.Comment: 5 pages, 4 figures, to be published in the Astrophysical Journal Letter

    Lifetime Measurement of the Cesium 6P\u3csub\u3e3/2\u3c/sub\u3e Level Using Ultrafast Pump-Probe Laser Pulses

    Get PDF
    Using the inherent timing stability of pulses from a mode-locked laser, we measure the cesium 6P3/2 excited-state lifetime. An initial pump pulse excites cesium atoms in two counterpropagating atomic beams to the 6P3/2 level. A subsequent synchronized probe pulse ionizes atoms that remain in the excited state and the photoions are collected and counted. By selecting pump pulses that vary in time with respect to the probe pulses, we obtain a sampling of the excited-state population in time, resulting in a lifetime value of 30.462(46) ns. The measurement uncertainty (0.15%) is slightly larger than our previous report of 0.12% [J. F. Sell et al., Phys. Rev. A 84, 010501(R) (2011)] due to the inclusion of additional data and systematic errors. In this follow-up paper we present details of the primary systematic errors encountered in the measurement, which include atomic motion within the intensity profiles of the laser beams, quantum beating in the photoion signal, and radiation trapping. Improvements to further reduce the experimental uncertainty are also discussed

    Electrospun Collagen: A Tissue Engineering Scaffold with Unique Functional Properties in a Wide Variety of Applications

    Get PDF
    Type I collagen and gelatin, a derivative of Type I collagen that has been denatured, can each be electrospun into tissue engineering scaffolds composed of nano- to micron-scale diameter fibers. We characterize the biological activity of these materials in a variety of tissue engineering applications, including endothelial cell-scaffold interactions, the onset of bone mineralization, dermal reconstruction, and the fabrication of skeletal muscle prosthetics. Electrospun collgen (esC) consistently exhibited unique biological properties in these functional assays. Even though gelatin can be spun into fibrillar scaffolds that resemble scaffolds of esC, our assays reveal that electrospun gelatin (esG) lacks intact α chains and is composed of proinflammatory peptide fragments. In contrast, esC retains intact α chains and is enriched in the α 2(I) subunit. The distinct fundamental properties of the constituent subunits that make up esC and esG appear to define their biological and functional properties

    Kick stability in groups and dynamical systems

    Full text link
    We consider a general construction of ``kicked systems''. Let G be a group of measure preserving transformations of a probability space. Given its one-parameter/cyclic subgroup (the flow), and any sequence of elements (the kicks) we define the kicked dynamics on the space by alternately flowing with given period, then applying a kick. Our main finding is the following stability phenomenon: the kicked system often inherits recurrence properties of the original flow. We present three main examples. 1) G is the torus. We show that for generic linear flows, and any sequence of kicks, the trajectories of the kicked system are uniformly distributed for almost all periods. 2) G is a discrete subgroup of PSL(2,R) acting on the unit tangent bundle of a Riemann surface. The flow is generated by a single element of G, and we take any bounded sequence of elements of G as our kicks. We prove that the kicked system is mixing for all sufficiently large periods if and only if the generator is of infinite order and is not conjugate to its inverse in G. 3) G is the group of Hamiltonian diffeomorphisms of a closed symplectic manifold. We assume that the flow is rapidly growing in the sense of Hofer's norm, and the kicks are bounded. We prove that for a positive proportion of the periods the kicked system inherits a kind of energy conservation law and is thus superrecurrent. We use tools of geometric group theory and symplectic topology.Comment: Latex, 40 pages, revised versio

    HLA-DR and HLA-DQ alleles in patients from the south of Brazil: markers for leprosy susceptibility and resistance

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Many epidemiological studies have shown that the genetic factors of the host play a role in the variability of clinical response to infection caused by <it>M. leprae</it>. With the purpose of identifying genes of susceptibility, the present study investigated the possible role of HLA-DRB1 and DQA1/DQB1 alleles in susceptibility to leprosy, and whether they account for the heterogeneity in immune responses observed following infection in a Southern Brazilian population.</p> <p>Methods</p> <p>One hundred and sixty-nine leprosy patients and 217 healthy controls were analyzed by polymerase chain reaction amplification and reverse hybridization with sequence-specific oligonucleotide probes and sequence-specific primers(One Lambda<sup>®</sup>, CA, USA).</p> <p>Results</p> <p>There was a positive association of HLA-DRB1*16 (*1601 and *1602) with leprosy <it>per se </it>(7.3% <it>vs</it>. 3.2%, <it>P </it>= 0.01, OR = 2.52, CI = 1.26–5.01), in accord with previous serological studies, which showed DR2 as a marker of leprosy. Although, HLA-DQA1*05 frequency (29.8% <it>vs</it>. 20.9%, <it>P </it>= 0.0424, OR = 1.61, CI = 1.09–2.39) was higher in patients, and HLA-DQA1*02 (3.0% <it>vs</it>. 7.5%, <it>P </it>= 0.0392, OR = 0.39, CI = 0.16 – 0.95) and HLA-DQA1*04 (4.0% <it>vs</it>. 9.1%, <it>P </it>= 0.0314, OR = 0.42, CI = 0.19 – 0.93) frequencies lower, <it>P</it>-values were not significant after the Bonferroni's correction. Furthermore, HLA-DRB1*1601 (9.0% <it>vs</it>. 1.8%; <it>P </it>= 0.0016; OR = 5.81; CI = 2.05–16.46) was associated with susceptibility to borderline leprosy compared to control group, and while HLA-DRB1*08 (11.2% <it>vs</it>. 1.2%; <it>P </it>= 0.0037; OR = 12.00; CI = 1.51 – 95.12) was associated with susceptibility to lepromatous leprosy, when compared to tuberculoid leprosy, DRB1*04 was associated to protection.</p> <p>Conclusion</p> <p>These data confirm the positive association of HLA-DR2 (DRB1*16) with leprosy <it>per se</it>, and the protector effect of DRB1*04 against lepromatous leprosy in Brazilian patients.</p

    Stellar feedback as the origin of an extended molecular outflow in a starburst galaxy

    Get PDF
    Recent observations have revealed that starburst galaxies can drive molecular gas outflows through stellar radiation pressure. Molecular gas is the phase of the interstellar medium from which stars form, so these outflows curtail stellar mass growth in galaxies. Previously known outflows, however, involve small fractions of the total molecular gas content and have typical scales of less than a kiloparsec. In at least some cases, input from active galactic nuclei is dynamically important, so pure stellar feedback (the momentum return into the interstellar medium) has been considered incapable of rapidly terminating star formation on galactic scales. Molecular gas has been detected outside the galactic plane of the archetypal starburst galaxy M82 (refs 4 and 5), but so far there has been no evidence that starbursts can propel substantial quantities of cold molecular gas to the same galactocentric radius (about 10 kiloparsecs) as the warmer gas that has been traced by metal ion absorbers in the circumgalactic medium. Here we report observations of molecular gas in a compact (effective radius 100 parsecs) massive starburst galaxy at redshift 0.7, which is known to drive a fast outflow of ionized gas. We find that 35 per cent of the total molecular gas extends approximately 10 kiloparsecs, and one-third of this extended gas has a velocity of up to 1,000 kilometres per second. The kinetic energy associated with this high-velocity component is consistent with the momentum flux available from stellar radiation pressure. This demonstrates that nuclear bursts of star formation are capable of ejecting large amounts of cold gas from the central regions of galaxies, thereby strongly affecting their evolution by truncating star formation and redistributing matter.Peer reviewedFinal Accepted Versio
    • …
    corecore